If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(4v^2)-24v=0
a = 4; b = -24; c = 0;
Δ = b2-4ac
Δ = -242-4·4·0
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-24}{2*4}=\frac{0}{8} =0 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+24}{2*4}=\frac{48}{8} =6 $
| 7x+1=5x-47 | | 6(×-2)/2=12x/4+6 | | 2a^2-137a+2340=0 | | n÷35=40 | | 2r=86 | | 32x-18+25x-10=180 | | 12m-6=24m | | 2x(-7)=-4 | | 32x-18=180 | | 200=130+2s | | 22+5x=40 | | 8+2d=18d | | X(t)=t^2-5t+6 | | 2n=4n-18 | | 9+7x+7x=-33 | | 7x-25=33 | | (2u-7)(9-u)=0 | | 8+7d=2d | | 1/3x-3/5=4/15 | | -39=-x-4x-9 | | 8y+y=108 | | 14y+9=0 | | -1.33y=-5 | | 8+3d=7d | | 14c+9=0 | | 12+7y=19 | | 6+7m=20m | | T-3t-1=7 | | 3z+-8=6z | | 9+2x=96 | | 15x-30=10x+40 | | C=5/9(f-23) |